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Abstract

Neural networks are omnipresent in contemporary machine learning and are promising in dealing with
the immense amount of data that exists in today’s world. Because networks are so useful, it’s essential to
understand their behavior and their outputs. Especially because their outputs influence people’s lives and
experiences. This paper surveys a series of results that seek to understand when neural networks converge
to a good output.

1 Introduction: Formulating Our Discussion Mathematically
Neural networks have become one of the most promising tools in contemporary machine learning problems.
Unfortunately, these networks are as mysterious as they are useful. Because of their complexity (they are
built from many function compositions), it’s hard to predict what kind of parameter fit (good or bad) will be
returned by the neural network. Exploring what can be said about these outputs of neural networks has been
subject of great research in recent years and many partial discoveries have been publicized. Unfortunately, a
definitive result is still lacking. In this article we review the exposition found in [1] which surveys results that
seek to understand how good are the outputs of neural networks. All of the facts presented in this article are
taken from [1] unless specified otherwise.

Let us first formulate our discussion in more mathematical terms. We are interested in whether the output
of a neural network is good, and the measurement of “goodness” is usually performed in terms of some loss
function F (θ) which is minimized by the best parameter θ. In other words, we are searching for

θ∗ = arg min
θ∈RD

F (θ) .

The most common methods of finding the optimal θ∗ are essentially improved variants of gradient descent.
The issues arise because, since F (θ) is not convex, the gradient descent method can (in theory) get stuck
in local minima or saddle points of the function F (θ). The article [1] surveys different results that try to
understand the output of neural networks from two different angles. First, it seeks to understand whether it’s
possible that all local minima of F (θ) are in fact global minima. From a different angle, the article tries to
understand whether the gradient descent method can avoid the sub-optimal local minima of F (θ) even if
these bad local minima are present in the loss function.

1.1 Specifying the Objects of Study

For this discussion, we will need to talk about neural networks rigorously so it will be helpful introduce
them in a mathematical language. Given an collection of input data x1, ...,xn ∈ Rdx and output data
y1, ...,yn ∈ Rdy , a fully connected neural network is a function fθ : Rdx → Rdy given by

fθ(x) = WLϕ(WL−1...ϕ(W2ϕ(W1x+ b1) + b2)...+ bL−1)
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where ϕ : R → R is called an activation function that is applied to vectors in an element-wise fashion,
each Wi ∈ Rdi×di−1 is a matrix and θ = (W1, b1, ...,WL−1, bL−1, bL). By definition, we have specified
d0 = dx, dL = dy. Our hope is that the neural network fθ will predict the output y from the input x based on
the available data inputs {xi,yi}ni=1. To ensure that the neural network manages succeed in this prediction,
we are trying to find the best parameters θ that will fit the input data. Mathematically, this is fomulated as a
minimization problem

min
θ

F (θ) = min
θ

n∑
i=1

ℓ(yi, fθ(xi))

where ℓ(y, z) is a function that measures the “distance” between y and z. Some examples are the Euclidean
distance ℓ(y, z) = ||y−z||22 =

∑dy
j=1(yj−zj)

2 for regression problems and ℓ(y, z) = log(1+exp(−yTz))

for binary classification problems.

2 A Promising Example: Linear Neural Networks
Let us start by discussing a simpler problem in which the map ϕ is just the identity map and so

fθ(x) = WL(WL−1...(W2(W1x+ b1) + b2)...+ bL−1) .

For simplicity, let us also assume b1, ..., bL−1 = 0 so that

fθ(x) = WLWL−1...W2W1x .

We are also interested in the regression problem where ℓ(y, z) = ||y − z||22. The linear neural network
minimization problem then becomes

min
θ

n∑
i=1

||yi − fθ(xi)||22 = min
θ

||Y −WLWL−1...W2W1X||2F (1)

where Y = [y1, ...,yn], X = [x1, ...,xn] are concatenation matrices of the data and || · ||F is the Frobenius
norm.

The simplest example of this problem would be

min
u,v∈R

(uv − 1)2 .

One can see that this has a collection of global minima when uv = 1, these are the only local minima of this
function, but it does have other critical points such as a saddle point at (u, v) = (0, 0). This is an example
of a network for which every local minimum is a global minimum. More generally, we have the following
result.

Theorem 2.1 If X , Y in the minimization problem (1) have full rank then every local minimum of the
objective function is a global minimum. 2

In the example above, we have X = 1 and Y = 1 which are nonzero scalars and thus have full rank. This
theorem generalizes the example for higher dimensional problems. Note that the result does not characterize
critical points. For that we have a different theorem, which we write informally to get the intuition across

Theorem 2.2 (Characterization of Critical Points for Overparametrized Linear Networks) Assume n ≥
dx, dy (there are more data points than the dimension of the input and output), XXT and XY T are full
rank, and Y XT (XXT )−1X has distinct singular values. Assume further that the output and input layer
have the lowest dimension out of all the layers of the network. Then for the problem (1), all critical points
with θ = (W1, ...,WL) so that WL...W2W1 being full rank is a global minimum and every critical point
with WL...W2W1 being singular is a saddle point. 2
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Observe that this theorem agrees with the example above. When uv = 1, then 1 is full rank and we have a
global minimum. On the other hand, the critical point u = v = 0 has uv = 0 being singular and corresponds
to a saddle point. This allowed us to completely classify critical points for certain overparametrized linear
neural networks. Now we look at more general (nonlinear) overparametrized networks.

3 Moving Onward: Overparametrized Nonlinear Networks
As in the previous section, we start with a simple, one dimensional example of a nonlinear network. Consider

min
u,v∈R

(uϕ(v)− 1)2 (2)

Consider, for example, when the activation function is the ReLU function ϕ(t) = max{0, t}. This has a
sub-optimal local minimum at u = 0, v = −1! This is explained in the following theorem.

Theorem 3.1 Let x, y be nonzero real numbers and consider the minimization problem

min
u,v∈R

(y − uϕ(vx))2 .

Then the following are equivalent:
(I) The problem has no sub-optimal local minima.
(II) If ϕ(t) = 0 then t is not a local maximum or minimum of ϕ. 2

This is a unsatisfying result since ReLU is a popular choice of activation function. There is in fact a result
that, generally, for sigmoid activation functions, there is no guarantee that there will not be sub-optimal local
minima for the single layer, one dimensional network minimization problem. This is formalized below.

Proposition 3.2 For n ≥ 3 with the data points x1, ..., xn ∈ R all distinct and for an sigmoid activation
function ϕ, there exist output data y1, ..., yn ∈ R so that the minimization problem

min
u,v∈R

n∑
i=1

(yi − uϕ(vx))2

has a sub-optimal local minimum. 2

In other words, for such sigmoid functions it’s always possible that real world data will yield a neural
network problem that has sub-optimal local minima. This proposition brings us to a halt in the discussion of
sub-optimal local minima. We must then move away from this discussion of suboptimal local minima and
towards something else. One useful notion of study is that of valleys and basins.

3.1 A Less Local Approach: Valleys and Basins

The idea behind this discussion is to look at the landscape of the objective function and move away from
the pointwise perspective. We are interested in what the neighborhood of local minima looks like. A useful
notion is that of a spurious valley. A spurious valley is a connected component of the sub-level set

{θ : F (θ) ≤ c}

that contains no strict global minimum of the objective function.
If a function has no spurious valley, even if a sub-optimal local minimum exists on a sufficiently small

sub-level set of the objective function, there is a non-increasing path from that local minimum to the global
minimum. This is useful because it might prevent the gradient descent method from reaching and getting
stuck at sub-optimal local minima. Therefore, we are interested in cases when there are no spurious valleys.
To this end, we have the following theorem.
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Theorem 3.3 Suppose that a one dimensional, arbitrarily deep neural network fθ satisfies the following:

1. The activation function ϕ is strictly monotonic and ϕ(R) = R.

2. The activation function is linearly independent from any shifted versions of itself. That is, for any
m ≥ 2 and all combination of coefficients a1, ..., am and c0, c1, ..., cm with the ci distinct, if c0ϕ(x) +
c1ϕ(x− a1) + ...+ cmϕ(x− am) = 0, then we must have that c0 = c1 = ... = cm = 0.

3. dL−1 ≥ d.

4. All the training data points are distinct.

Then the empirical loss objective function has no spurious valleys.

This would cover, for example ϕ(t) = t but not the ReLU activation function. In any case, this is a
promising result and moving away from the local perspective of local minima might be useful. Following this
philosophy, it is of interest to talk about set-wise local minima. In particularly, we are interested in set-wise
strict local minima. For a function f : Rd → Rl, the set S is a strict local minimum of f in the sense of sets if
there is some ϵ > 0 so that for all x ∈ S and all y ∈ Rd \ S satisfying ||x− y||2 ≤ ϵ, we have f(x) < f(y).
In other words, a set-wise local minimum of f is a set so that the value of f all its points close to its boundary
are smaller than all the nearby points outside of its boundary.

The notion of a set-wise strict local minimum gives rise to the definition of a sub-optimal basin, which
is a set-wise local minimum that contains no global minima. This notion is essentially the set version of a
sub-optimal local minimum. There is a result analogous to the theorem above to sub-optimal basins.

Theorem 3.4 Suppose that a one dimensional, arbitrarily deep neural network fθ satisfies the following:

1. There is a k so that the k-th entry of all the input data (xi)k are distinct.

2. dL−1 ≥ d.

3. The activation function ϕ is continuous.

Suppose, in addition that the loss function ℓ(u,v) is convex with respect to v. Then the empirical loss
objective function has no sub-optimal basins.

These results show a promising direction in understanding the behavior of descent methods for neural
networks. These are the main theoretical results covered in the paper regarding the geometric landscape of
neural networks. We now discuss some attempts at eliminating sub-optimal local minima from the network
minimization problem.

4 Getting Rid of the Issue: Removing Bad Local Minima from Nonlinear
Neural Networks

We are interested in identifying the regions where the there are no sub-optimal local minima for the objective
function of the neural network problem. For this, we are mostly interested in the last layer of the neural
networks. In particular, we rewrite the neural network as

fθ(x) = WLZθ(x) .

Where Zθ essentially encompasses all the other layers of the neural network. Rewriting the problem like this
is useful because we can impose conditions on Zθ so that the minimization problem has no bad local minima
as long as x is restricted to a subset of Rdx . An example presented below.
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Claim 4.1 If θ∗ is a local minimum of F (θ∗) =
∑n

i=1 ||yi − fθ∗(xi)||22 so that the matrix

Zθ∗(X) = (Zθ∗(x1), ...Zθ∗(x1))

is full rank, then θ∗ is a global minimum.
Further, if the derivatives of the activation function ϕ(k)(0) for k = 1, ..., n− 1 are nonzero, then the set

where {θ : Zθ(X) has full rank} is dense. 2

This result allows us to avoid local sub-optimal local minima with almost sure probability whenever
the activation function satisfies the derivative condition in the claim. Unfortunately, this does not cover, for
example, non-smooth activation functions such as ReLU.

An alternative is to modify the network and the objective function for the minimization problem so that
the problem yields better results. Suppose we modify the neural networks by creating a new function f̃ so that

f̃θ̃(x) = fθ(x) + a exp(wTx+ b)

where θ̃ = (θ, a,w, b). Suppose that the loss function ℓ is the logistic loss function

ℓ(y, z) = log(1 + exp(−yTz))

then we consider the minimization problem

min
θ̃

F̃ (θ̃) = min
θ̃

n∑
i=1

ℓ(yi, f̃θ̃(xi)) +
λa2

2
.

Then we have the following result.

Theorem 4.2 For the minimization problem above, we have

1. F̃ (θ̃) has at least one local minimum.

2. At every local minimum, a = 0.

3. If θ̃∗ = (θ∗, a∗,w∗, b∗) is a local minimum of F̃ (θ̃), then it is also a global minimum of F̃ (θ̃) and θ∗

is a global minimum of

F (θ) =
n∑

i=1

ℓ(Yi, f̃θ̃(xi)) .

2

This result seems like it solves all of our problems! At least for the logistic regression case. There is one
issue, however, and that is that even though there are no sub-optimal local minima of this new minimzation
problem, there may be a decreasing path of θ̃(s) for s > 0 so that ||θ̃(s)||2 → ∞ as s → ∞ and F̃ (θ̃(s)) is
strictly decreasing. This means that gradient descent may never converge to a local minimum and instead it
may just send the θ̃ to infinity.

There is a way to avoid that for certain neural networks. For example, consider the one layer, one
dimensional ReQU neural network defined by

fθ(x) =
m∑
j=1

ai(max{wjx+ bj})2 =
m∑
j=1

aj
(
ReQU(wjx+ bj)

)2
,
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where m ≥ n + 1 with n being the number of input data points. As above, suppose the loss function is
logistic regression and suppose we are minimizing the objective function

F (θ) =
n∑

i=1

ℓ(yi, fθ(xi)) +
1

3

m∑
j=1

λj

(
|aj |3 + 2(||wj ||22 + b2j )

3/2
)

where θ = (a1,w1, b1, ..., am,wm, bm), and where λ = (λ1, ..., λm) is a parameter vector that needs to be
tuned in the problem. For the right λ, one can prove that every local min achieves zero training error and thus
every local minimum would be a global minimum. In particular, we have the following

Theorem 4.3 If m ≥ n+ 1 and F (θ) is defined as above, then for each collection of input and output data
x1, ..., xn, y1, ..., yn ∈ R, there is a λ0 > 0 and a set C ⊂ R of measure zero so that for any λ ∈ (0, λ0)

m\ C,
we have

1. The objective function F (θ) is coersive, that is

lim
||θ||→∞

F (θ) = +∞ .

2. Every local minimum θ∗ of the function F (θ) is a global minimum of F (θ) and achieves zero training
error. 2

This says that basically whatever λ one chooses, as long as its entries are small enough, gradient descent
will likely always converge to a global minimum of F (θ).

We have covered useful properties of the minimization problem that will guarantee a desirable landscape
of the objective function for the minimization problem. We have not, however discussed whether those
properties translate to convergence of gradient descent to global minima. This is what we focus on below.

5 Was It All Worth It? The Behavior of Gradient Descent on the Discussed
Problems

The hope is that for objective functions with the properties discussed above then for most initializations,
gradient descent will converge to a global minimum. For example, if a function has sub-optimal basins the
hope is that the sub-optimal basins have small measure and thus, gradient descent will converge to a global
minimum with high probability. The goal result is outlined below.

Principle (Blueprint for Gradient Descent) If F is an objective function represents the neural network
minimization problem. Let θ∗ be the point of convergence of gradient descent or stochastic gradient descent
and F ∗ be the minimum value of F (θ). Then there are small constants δ, ϵ so that

P(F (θ∗) < F ∗ + ϵ) > 1− δ .

Intuitively, this means that the gradient descent method will converge to a almost optimal value for F
with high probability. Unfortunately, there is still not a lot of results that confirm this principle theoretically.
Because we the conjecture deals with probability measures, stochastic gradient descent has proved more
fitting to this discussion as it favors a probabilistic perspective.
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There are some results, however, that guide us in the direction of this principle. The two strategies to
achieve this are first showing that for almost all initial conditions avoid the bad regions of the objective
function landscape. The other strategy is to show that whenever gradient descent reaches a bad region, it will
likely leave it and move on towards a global minimum.

Some results are available for ultra-wide neural networks. For an example, consider the matrix G(θ) =

(gradθ fθ(x1), ..., gradθ fθ(xn)) and K(θ) = G(θ)TG(θ) and suppose dy = 1. Suppose the loss function
ℓ is the Euclidean distance squared. Then we have the following result.

Claim 5.1 We have the following:

1. If θ∗ is a critical point of the objective function F (θ) and K(θ∗) has full rank, then θ∗ is a global
minimum and F (θ∗) = 0.

2. If θk for k = 0, 1, ... are the iterates of gradient descent and if there is some constant c > 0 so that

λmin(G(θk)) ≥ c

for all k = 0, 1, ..., then we have that and limit point θ∗ of the sequence {θk}∞k=0 which is a critical
point of F (θ) is a global minimum of F (θ) with F (θ∗) = 0.

2

These results correspond to ultra wide neural networks and are very strong. The unfortunate fact is that
many neural networks of interest are not ultra-wide and thus this does not necessarily apply to many cases
of interest. This summarizes some results for gradient descent behaving well with certain neural network
problems.

6 Discussion and Conclusion
This paper covers a comprehensive collection of results regarding neural networks. One question I had was
whether some of the nonsmoothness of ReLU can be fixed by looking at the function

r(t) =

{
0 if t ≤ 0

(1 + t2)1/2 − 1 if t > 0

which is a commonly used function in mathematical analysis that asymptotically behaves like |t| as t → ∞
and is smooth at t = 0.

In the future, I hope to implement neural networks and observe the behavior of gradient descent with
different activation functions. I also hope to read some of the proofs for the results more deeply to understand
ideas behind the behavior of neural networks. I have learned a lot from this paper and now I have a deeper
knowledge of how neural networks behave and I understand a bit more about the theory of these essential
objects in contemporary machine learning. I will surely use some of these results to better choose the setup
whenever I’m using neural networks in the future.
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