
A SURVEY OF METHODS FOR STREAMING PCA

NAME: BERNARDO BIANCO PRADO,
UNIQNAME: BEPRADO,

UM ID: 42685820

1. Main References

The main references for this review are [1], [3], [4], [5], [6], [8].

2. Introduction

Principal component analysis (PCA) is a commonly used method to understand underlying
structures of data. In many cases, it helps reduce the dimensionality of data and thus, the
computational cost of manipulating it. PCA is an effective method, but can be computationally
expensive since it has a time complexity of O(nd2) for each update, where n is the number of
data points and d is the number of features of the data [3]. In particular, if one receives new data
routinely, performing this algorithm will be impracticable. This is indeed the situation in many
important problems in science and engineering. For example, in recommendation systems such
as Netflix recommended movies or in the computer vision problem of reconstructing a 3D image
from a variety of 2D pictures [3]. In these problems, one must consistently update the principal
components as new data becomes available in order to produce improved results. In addition,
these problems share the peculiarity that the data available to the algorithm has missing entries.
In order to deal with the constant inflow of data and the missing information, one needs a series
of improved PCA methods. In this paper, we will survey a series of streaming PCA methods
that attempt to circumvent these two obstacles and discuss their effectiveness in doing so.

3. Problem Statement and Notation

We will survey three categories of streaming PCA: algebraic methods, geometric methods and
deep learning methods. All these approaches will arrive at similar results but provide different
perspectives and computational approaches. In particular, they will have different run times,
convergence rates, or computational and memory complexities.

In this review, we will denote matrices by upper case letters such as A and vectors by lower
case letter, such as x. A subscript on a matrix or a vector will denote an ordering of the matrices
or vectors, for example xl will mean the l-th data point of an ordering. We will write xl(i) to
mean the i-th entry of the vector xl. In this article, we will assume vectors x lie in Rd unless
otherwise specified and we will use the letter n for the number of data instances in our problem.
We will write ℓp for the norm ||x||p = (x(1)p + ... + x(d)p)1/p. For example, ||x||2 is just the
Euclidean norm of the vector x ∈ Rd. We will denote by k the dimension of the subspace we
are estimating with the PCA algorithms. A boldface E will denote the expectation operator
common in probability theory. For example, E[x] will mean the expected value of a random
vector x. Finally, Ik will denote the k by k identity matrix.

4. Algorithms for Streaming PCA

4.1. Fundamental Ideas. We begin this section with some fundamental ideas that will be
recurrent throughout our survey. A first step is to realize that PCA can be framed in a deter-
ministic, probabilistic or unified setting. In our survey, we will look at it mostly through the
lens of a minimization problem that unifies both the probabilistic and deterministic paradigms

Date: October 4, 2022.
1

(where the deterministic is seen as a sampled version of the probabilistic). For a classical PCA
algorithm, we seek to minimize the following loss function [3] for a random vector x

J(U) = E||x− UUTx||22 ≈
1

n

n∑
l=1

||xl − UUTxl||22

over matrices U ∈ Rd×k so that UTU = Ik. For large enough n, the functional J is well
approximated by the sum on the right. Which can be seen as the sum of the residual vectors
from the projection onto the column space of U .

Methods that treat PCA as a minimization problem have the advantage of low computational
complexity through the use of iterative methods such as gradient descent or stochastic gradient
descent. This is particularly useful in the case of streaming PCA since this problem requires one
to constantly update the optimal k-subspace [3].

In the case in which we don’t observe all features in our data, one can usually look at a similar
functional without penalty for the unobserved entries. For this purpose, we define [3] the operator
PΩn (here Ωn is a vector with entries 0 and 1) that maps a vector x to a new vector PΩn(x) that
has i-th entry x(i) if Ωn(i) = 1 and 0 if Ωn(i) = 0. Informally, PΩn ignores unobserved features.
One may then look at a new functional that is the center of the Grassmannian Rank-One Update
Subspace Estimation (GROUSE) algorithm that we cover next.

4.2. The GROUSE Algorithm. The GROUSE algorithm [4] applies the ideas above and
solves the streaming PCA problem with missing data by minimizing the loss function

F (U) =

n∑
l=1

||PΩn(xl − UUTxl)||22

over the constraint set UTU = Ik. It turns out this is equivalent [3], [4] to minimizing the loss
function

n∑
l=1

min
w

||PΩn(xl − Uw)||22 =
n∑

l=1

dist(xl,PΩn(S))2

where S is the subspace spanned by the columns of U . Thus, minimizing the functional F is
equivalent to minimizing the more geometrically intuitive functional which looks at the best
average fitting subspace S to the data at hand.

The loss function F is minimized through a geometric modification of the stochastic gradient
descent (SGD) algorithm. In particular, because the constraint set UTU = Ik is non-Euclidean,
we must modify the SGD algorithm so our gradient step does not leave the constraint set.
Fortunately [4], this constraint set is well understood and we can explicitly compute its geodesics
(shortest distance paths). The SGD algorithm update step is changed to follow a geodesic
starting at the current matrix Un−1 with initial direction equal to the gradient

∇U ||PΩn(xl − UUTxl)||22
∣∣∣∣
U=Un−1

of a randomly chosen data point l. The step size parameter now becomes the geodesic “time”
parameter that will control how far the geodesic should go in the update step. The requirement
on this step parameter to ensure convergence to at least a local minimum is that

lim
n→∞

ηn = 0 ,
∞∑
n=1

ηn = +∞ .

So they must decay, but not decay too fast. This algorithm has computational complexity of
O(dk + |Ωn|k2) for each update which is an improvement from standard PCA if k ≪ n.

This algorithm performs well [4] against state of the art streaming PCA algorithms but has
the disadvantage that it can be sensitive to noise in the data [6]. A more robust algorithm that
follows a similar framework is the Grassmannian Robust Adaptive Subspace Tracking Algorithm
(GRASTA).

4.3. GRASTA. The source for the lack of robustness in the GROUSE algorithm lies in the ℓ2

norms in the loss function [6]. To remediate that, GRASTA looks at a similar functional with
ℓ2 norm substituted by the ℓ1 norm:

Fgrasta(U) =
n∑

l=1

||PΩn(xl − UUTxl)||1

with the same constraint UTU = Ik. In contrast to the GROUSE algorithm, GRASTA does not
simply perform the modified SDG due to the nonlinear constraint [6]. It utilizes a framework that
explores the augmented Lagrangian and the dual formulation of the problem. In particular, they
write the augmented Lagrangian and perform alternating updates between the dual variables and
the constrained matrix U . For the dual variable update, they use a method called Alternating
Direction Method of Multipliers (ADMM) [2] and for the matrix update step, they use the
manifold adaptation of SGD as in the GROUSE algorithm [6].

Another popular algorithm that takes the geometric approach to PCA is called Projection
Approximation Subspace Tracking (PAST).

4.4. The PAST Algorithm. The PAST algorithm [8] assigns more relevance to current data
in comparison to past data, and thus is well suited for the problem of streaming PCA, where
the data’s distribution may be changing over time. It does so by minimizing the following loss
function,

L(U) =

n∑
l=1

λn−l||xl − UUTxl||22

where 0 < λ ≤ 1. This allows the algorithm to be more adaptable to changes in the environment.
The requirement that UTU = Ik is dropped because the map UUT is a good approximation to
the constrained projection [3]. In fact, PAST goes one step further and approximates this loss
function by

Lpast(U) =
n∑

l=1

λn−l||xl − UUT
l−1xl||22 .

In other words, it utilizes previous computed matrices Ul for l = 0, ..., n − 1 to simplify the
functional. In the end, after all these simplifications, it performs [8] standard SGD on Lpast and
achieves a computational complexity of O(dk) for each update, a significant improvement on
the standard PCA algorithm and even on the GROUSE algorithm.

The way it was formulated, the PAST algorithm is not well suited to deal with the missing
data case. Fortunately, this can be fixed through a similar process as w outlined earlier in
this review. This leads us to the Parallel Estimation and Tracking by Recursive Least-Squares
(PETRELS) algorithm.

4.5. The PETRELS Algorithm. The main difference between the PETRELS and the PAST
algorithms is that PETRELS incorporates the projections PΩl

into the loss function. Namely,
it minimizes the function

Lpetrels =
n∑

l=1

λn−l||PΩl
(xl − UUTxl)||22 .

It’s worth mentioning that the addition of the weights λn−l makes this algorithm less susceptible
to outliers than standard PCA or the GROUSE algorithm. Similarly to previous methods, the
PETRELS algorithm performs SGD, but now of second order. This is in contrast with the
GROUSE algorithm, which performs first order SGD. This may give faster convergence of the
descent at the cost of a larger computational complexity of O(|Ωn|k3). This algorithm can be
paralellized to yield a complexity of O(k3).

4.6. Autoencoder Methods. We have discussed algorithms for PCA that focus on minimizing
a loss function. These have nice complexity problems that are suitable for streaming PCA. We
will now cover a method that takes on a different perspective. This perspective comes from the
observed equivalence of PCA with certain autoenconders [7]. This provides a path to a nonlinear
version of PCA that may be useful in complex problems.

In particular, [1] implemented an autoencoder and compared it to the GROUSE and GRASTA
algorithms. This more suitably applied to images since it uses convolutional neural networks
(CNN). The autoencoder has is composed of 5 convolutional layers with 64 5× 5 and one fully
connected layer filters. The network uses a tanh activation functon. The initial images had
dimensions 576 × 604 and the ourput had dimension 2048. The authors used an ℓ1 loss function
in the network, making it robust to outlier data. The loss function is simply a weighted sum of
differences in the original image and the reconstructed image, where the weights are learned in
training.

This method was compared to the GROUSE and GRASTA algorithms and achieved a runtime
of about 20 times faster than GROUSE and 6 times faster than GRASTA. This comparisons are
only empirical since theoretical analysis of the autoencoder can be difficult and was not explored
in the paper. On the other hand, this method may prove fruitful for many video applications at
the cost of giving up the intuition that we gain from the other algorithms.

References

[1] A. Akhriev and J. Marecek, "Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anom-
aly Detection," 2019 IEEE International Symposium on Multimedia (ISM), 2019, pp. 208-2083, doi:
10.1109/ISM46123.2019.00045.

[2] S. Boyd, "Distributed optimization and statistical learning via the alternating direction method of multipli-
ers." now Publishers, Hanover, Massachusetts; Delft, The Netherlands, 2011.

[3] L. Balzano, Y. Chi and Y. M. Lu, "Streaming PCA and Subspace Tracking: The Missing Data Case," in
Proceedings of the IEEE, vol. 106, no. 8, pp. 1293-1310, Aug. 2018, doi: 10.1109/JPROC.2018.2847041.

[4] L. Balzano, R. Nowak and B. Recht, "Online identification and tracking of subspaces from highly incomplete
information," 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
2010, pp. 704-711, doi: 10.1109/ALLERTON.2010.5706976.

[5] Y. Chi, Y. C. Eldar and R. Calderbank, "PETRELS: Parallel Subspace Estimation and Tracking by Recursive
Least Squares From Partial Observations," in IEEE Transactions on Signal Processing, vol. 61, no. 23, pp.
5947-5959, Dec.1, 2013, doi: 10.1109/TSP.2013.2282910.

[6] J. He, L. Balzano and A. Szlam, "Incremental gradient on the Grassmannian for online foreground and back-
ground separation in subsampled video," 2012 IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 1568-1575, doi: 10.1109/CVPR.2012.6247848.

[7] G. E. Hilton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science
(American Association for the Advancement of Science), vol. 313, no. 5786. Washington, DC: American
Association for the Advancement of Science, pp. 504-507.

[8] Bin Yang, "Projection approximation subspace tracking," in IEEE Transactions on Signal Processing, vol.
43, no. 1, pp. 95-107, Jan. 1995, doi: 10.1109/78.365290.

