
Vision Transformers In Human Pose Estimation

Javier Salazar Cavazos, Nithin Donepudi, Wenrui Lu, Bernardo Bianco Prado
University of Michigan, Ann Arbor, Michigan, US

javiersc@umich.edu, nithind@umich.edu, wenruilu@umich.edu, beprado@umich.edu

Abstract
Human pose estimation involves visually representing a

person as a graphical skeleton by representing each joint
as a landmark point. This is an important task since it
can be used to estimate human activity, motion transfer,
and robotic movement amongst other things. In this pa-
per, human pose estimation is considered in a neural net-
work model using vision transformers as implemented in
the ViTPose paper [11]. For baseline comparisons, a con-
volutional pose machines [9] network is trained to compare
vision transformers against convolutional models.

1. Introduction

Our goal is to solve the human pose estimation problem
specifically for the upper body of a person. This problem
is motivated by automotive applications in which we want
to monitor whether a person driving a car is paying atten-
tion, is distracted, or is falling asleep. In the end, our goal
is to use the trained model to estimate, in real time, the pose
of a person on a webcam to determine driver status. How-
ever, for this project, we will only consider the first part that
involves estimating pose. Determining driver status with
these features is left as future work. This project is moti-
vated by Nithin Donepudi’s current independent study with
a professor in the robotics department. Nithin is tasked with
driver awareness detection, and this EECS504 project is a
stepping stone to achieve this goal. This is the motivation
for our work.

Ever since 2012, CNNs have been the de-facto model for
computer vision tasks. However, over the past five years,
transformers have already taken over the field of NLP, re-
placing LSTMs and RNNs in the process which were previ-
ously established as state of the art approaches in sequence
modeling and transduction problems. When we study the
architecture of vision transformers and CNNs, we find sev-
eral differences in the way they process data. Vision trans-
formers capture details/features of the entire image from the
very beginning, compared to CNNs that are known to focus
on small portions of the image, initially reading colors and
edges working their way up to more high level features.

2. Related Work

Traditional methods for human pose estimation like pic-
torial structures represent the body as an undirected graph
model. Specifically, it models the body as a conditional ran-
dom field and analyzes the pairwise potentials between the
joints [7]. This type of model was popular before neural
networks took off for various computer vision tasks.

In recent years, deep learning methods relying on Con-
volutional Neural Networks (CNNs) achieved superior re-
sults [1]. For example, early CNN pose estimations used
a ResNet backbone model in order to avoid the problem
of vanishing gradients experienced with other CNN mod-
els [10]. Later models, like the popular Convolutional Pose
Machine (CPM) took an approach that refined joint detec-
tion via a set of stages in the network to iteratively improve
estimation by using early image features [9]. These kind
of state of the art networks at the time achieved around a
∼60mAP score. Pose estimation then experienced rapid
development in recent years by considering vision trans-
formers in parts of the architecture. Early works tended to
treat the transformer model only as a better decoder and not
used as the backbone itself [6]. For example, TransPose di-
rectly processes the features extracted by CNNs as tokens
in the transformer-based decoder to model the global rela-
tionship among the features [12]. These early transformer-
based pose estimation methods obtain superior performance
on popular keypoint estimation benchmarks. However, they
either need CNNs for feature extraction which is not ideal
since the receptive field is limited or requires careful design
considerations of the transformer architecture due to the dif-
ficulty in training such models from scratch.

Recently, self-supervised learning methods [4] have
been proposed for training plain vision transformers. With
masked image modeling (MIM) as pretext tasks, these
methods provide good initializations for plain vision trans-
formers that make it easier to train. In this paper, however,
we consider a vision transformer backbone model called
ViTPose [11] and train from scratch to show it still outper-
forms CNN models such as convolutional pose machines.

1



3. Methods

3.1. Convolutional Pose Machine (CPM)

Figure 1: CPM model overview

From Figure 1 above shown in “Convolution Pose Ma-
chines” by Wei et al [9], the CPM framwork consists of
convolutional layers combined with max pooling layers in
a sequential manner. One set of these layers is known as
a “stage”. Multiple stages are linked together where early
image features are added back to the output of each later
stage in a manner similar to ResNet networks. The output
of each stage consists of belief heatmaps for each landmark.
The purpose of this is to implicitly model long-range depen-
dencies between variables to produce increasingly refined
estimates for landmark locations as the number of stages
increase. Figure 2 below illustrates how further refinement
in each stage increases accuracy for the estimation of the
right hand landmark.

Figure 2: CPM stage refinement

An interesting observation about CPM networks is how
the receptive field increases as more stages are added and
thus overcome receptive field issues experienced in earlier
convolutional networks that cannot see large regions of the
image to gain context. Moreover, given how deep the stages
go, one would naturally expect vanishing gradients to be a
problem. However, since early image features are addded
back to the output of each stage, this skip connection setup
helps overcome the problem of vanishing gradients during
training. For the project, a 6-stage CPM is trained as a
baseline method to compare against ViTPose (as done in
the original CPM paper).

3.2. Vision Transformer Pose (ViTPose)

An attention mechanism is a method to selectively
weight the input features and learn (pay attention) to cer-
tain features based on the query the user is interested in.
For more information about how attention works, refer to
Appendix B. The equation for attention is described as fol-
lows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimension of the keys and is used to prevent
small gradients. These multiple projected keys, queries, and
values are fed to h attention mechanisms to get the attention
matrices. Once done, all are concatenated together to be
projected back to the model dimension via a linear layer.
Mathematically, this can be described as the following:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

where the projection matrices are described as WQ
i ∈

Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,WV

i ∈ Rdmodel×dv ,WO ∈
Rhdv×dmodel . Here, the input data is given a positional em-
bedding to keep track of connections of text in a sentence
for example and multi-head attention is applied after layer
normalization. Using ideas from ResNet [5], skip connec-
tions are introduced and can be considered a form of induc-
tive bias. Once attention is calculated, this information is
fed to a multi-layer perceptron. The transformer block is
shown in Figure 13 (in Appendix B). However, these ideas
have been used in language processing tasks traditionally
and not in computer vision.

Figure 3: Vision transformer

In a influential paper by Dosovitskiy et al. [3] called “An
Image Is Worth 16x16 Words”, the idea of a vision trans-
former is introduced to adapt transformers for vision tasks.

2



The novelty being that patches of the images are treated as
units in the same way that a word in a sentence is a unit.
Breaking an image into 16x16 patches, each patch is then
linearly projected to a latent dimension space concatenated
with a 1D positional embedding that is learned to give posi-
tional information of the patch within the image. After go-
ing through L transformer layers, a detector head is given
the final attention maps to perform various tasks like image
classification. See Figure 3 above for the overall layout of a
vision transformer.

Image x ∈ RH×W×C is reshaped to patches xp ∈
RN×(P 2C) where (H,W ) is the original resolution, C is
the color channels, (P, P ) is the patch resolution, and N =

HW/P 2 is the number of patches. Let E ∈ R(P 2C)×D

be the linear projection matrix and Epos ∈ R(N+1)×D is
the positional embedding that will be learned. In a image
classification problem, the vision transformer will appear
as follows for l ∈ {1, ..., L}:

z0 = [xclass;x
1
pE;x2

pE; ...;xN
p E] + Epos

z
′

l = MHSA(LN(zl−1)) = zl−1

zl = MLP(LN(z
′

l)) + z
′

l

y = LN(z0L)

where MSHA is multi-head self attention, MLP is the multi-
layer perceptron, and LN is layer normalization. For this
project, the ViTPose model [11] is utilized based on this
idea of vision transformers as a backbone. The model is
illustrated in Figure 4 along with a decoder head in Fig-
ure 5 that is standard across pose estimation and various
other problems like object detection. Given a person in-
stance bounding box X ∈ RH×W×3 as input, the patch
embedding transform such input to F ∈ RH

d ×W
d ×C where

d is the down sampling ratio. For each of these tokens, the
data is processed by performing the following

F
′

i+1 = Fi+MHSA(LN(Fi)) Fi+1 = F
′

i+1+FFN(LN(F
′

i+1))

where i represents the transformer layer i ∈ {1, ..., L}
and F0 = PatchEmbed(X) is the initial projection. The
output of the transformer layers stays the same so Fout ∈
RH

d ×W
d ×C . After this, a standard decoder block will gener-

ate localization heatmaps for each landmark by performing
the following

K = Conv1×1(Deconv(Deconv(Fout)))

where K ∈ RH
4 ×W

4 ×Nk is the heatmap for each landmark.
Nk refers to the total number of keypoints to be estimated.

Figure 4: Model architecture

Figure 5: Decoder block

4. Experiments

For our experiments, we used the MS COCO 2017
dataset for model training. Since ViTPose is a top-down
pose estimation model, we use the ground truth bound-
ing boxes provided in the annotations. The model hyper-
parameters that we fine tuned in the models are provided in
Table 2. These values are kept the same as the original pa-
per values for reproducibility sake where possible. For the
loss function, we use the classical loss that compares the es-
timated belief maps with the true belief maps generated by
forming a Gaussian around each joint. This is expressed as:

L =

P∑
p=1

∑
x,y∈R

∥bp(x, y)− bp∗(x, y)∥2F

for body part p ∈ {1, ..., P} and image coordinates (x, y) ∈
R2. Figure 6 illustrates the results of training the full 12
layer model from the paper. More figures are shown in Ap-
pendix A for the other models.

1 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (m
AP

)

Pose Estimation ViTPose (L=12)

Training
Validation
ViTPose Paper Model (L=12)

Figure 6: Accuracy plot for our ViTPose (L = 12) model

3



As a side note, for training, the data loader pipeline used
involves the following: shifting the ground truth bounding
boxes, randomly flipping some images, keeping only the
top half of the body or lower body for some images, scal-
ing and rotating images, normalizing tensors, and generat-
ing the target heatmaps given the point values in the an-
notation files. We compared our results with the ViTPose
paper and CPM paper as seen in Table 1. Surprisingly, we
see that the scaled-down version of ViTPose (6 layers, 43M
params.) performs similarly to our 12 layer implementation
(86M params.) of the model. Thus, it illustrates the ad-
vantage of smaller transformer models on pose estimation
which is not discussed in the original paper. Further, we see
that our implementation (12 layers) under performs the ViT-
Pose paper model (12 layers). The most evident reasons are
that we ran our model for half the total epochs and the au-
thors used a custom weighted ADAM optimizer with layer
decay that likely improved results. Moreover, one possi-
ble reason for the under performance of our model is that,
due to memory limitations and batch size tradeoffs, we used
FP16 optimization in our model as opposed to the standard
FP32 from the paper, which could also have affected our
results. Regardless, both ViTPose implementations outper-
form the baseline method (6-stage CPM) we trained which
achieved a 59mAP score.

One can see that our implementations perform well when
using images from diverse scenarios such as as person driv-
ing a car and performing physical activities as seen in fig-
ure 7. From the images, it is clear all models handle oc-
clusions quite well, for example, when the person is facing
sideways. Since these models are top-down models, it is
necessary to perform object detection beforehand. We uti-
lize the YOLOV3 objected detection model that is publicly
available. This model has been trained already and we uti-
lize it to generate bounding boxes for each human subject
in the image so other objects are not considered since MS
COCO is purely a human dataset for this task.

5. Conclusion
From our experiments, we observed the advantages of

transformer models versus convolutional models for pose
estimation. Interestingly, even a small transformer model (6
layers) can perform competitively to a full 12 layer model.
We observed that our CPM results [9] were perfectly repro-
ducible, whereas our results for ViTPose got close to the
ViTPose paper results [11]. This slight discrepancy high-
lights the beneficial impact of using customized optimiz-
ers, as well as the fact that running a model for many more
epochs can achieve a small but meaningful increase in ac-
curacy. For future work, we seek to apply our model, along
with other vision features, to determine driver distraction
status in vehicles which is an important task for AI-assisted
driving and crash prevention systems.

Backbone AP AP50 AR AR50

Our ViTPose (L=6) 67.1 90.3 70.8 91.0
Our ViTPose (L=12) 71.0 91.5 74.5 92.3
Paper ViTPose (L=12) 75.8 90.7 81.1 94.6
Our CPM (T=6) 59.5 86.3 63.4 87.8
Paper CPM (T=6) 62.3 85.9 68.6 90.3

Table 1: Ablation study of the algorithms

Backbone
Our VitPose (L=6) Our VitPose (L=12) Our CPM (T=6)

Total Epochs 120 103 80
Learning Rate 5e-4, 5e-5, 5e-6 5e-4, 5e-5, 5e-6 5e-4, 5e-5, 5e-6
Optimizer AdamW AdamW Adam
Betas (0.9,0.999) (0.9,0.999) -
Weight Decay 0.1 0.1 -
Image Size (256,192) (256,192) (256,192)
Loss Joints MSE Joints MSE Joints MSE
Heatmap Size (48,64) (48,64) (24,32)
Patch Size (16,16) (16,16) -
Patch Embedding 768 768 -
Heads Per Layer 12 12 -
Dropout Rate 0.0 0.0 -
Decoder Kernel Size (4,4) (4,4) (4,4)
Deconvolution Layers 2 2 3
Feature Channels - - 128

Table 2: Training parameters for our implementations

(a) Our ViTPose (L=6) (b) Paper ViTPose (L=12)

(c) Our ViTPose (L=12) (d) Paper ViTPose (L=12)

(e) Our CPM (T=6) (f) Our ViTPose (L=6)

Figure 7: Model comparisons

4



References
[1] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Realtime multi-person 2d pose estimation using part affinity
fields, 2016.

[2] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin
Jaggi. Multi-head attention: Collaborate instead of concate-
nate, 2020.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2020.

[4] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners, 2021.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[6] Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, and
Zhuowen Tu. Pose recognition with cascade transformers,
2021.

[7] Leonid Pishchulin, Mykhaylo Andriluka, Peter Gehler, and
Bernt Schiele. Poselet conditioned pictorial structures. In
2013 IEEE Conference on Computer Vision and Pattern
Recognition, pages 588–595, 2013.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017.

[9] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines, 2016.

[10] Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines
for human pose estimation and tracking, 2018.

[11] Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vit-
pose: Simple vision transformer baselines for human pose
estimation, 2022.

[12] Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Trans-
pose: Keypoint localization via transformer, 2020.

6. Appendix A: Additional Results

1 20 40 60 80
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 (m
AP

)

Pose Estimation CPM (T=6)

Training
Validation
Paper Model (T=6)

Figure 8: Accuracy plot for our CPM (T = 6) model

1 20 40 60 80 100 120
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 (m
AP

)

Pose Estimation ViTPose (L=6)

Training
Validation
ViTPose Paper Model (L=12)

Figure 9: Accuracy plot for our ViTPose (L = 6) model

7. Appendix B: Attention Mechanisms
In “Attention Is All You Need” paper by Vaswani et al.

[8], the transformer architecture is introduced for natural
language processing based strictly on attention mechanisms
with no convolutions or recurrences. An attention mecha-
nism is a method to selectively weight the input features and
learn (pay attention) to certain features based on the query
the user is interested in. Visually, figure 10 from the original
paper shows the attention mechanism that is broken down as
inputs Q,K,V meaning the query, keys, and values.

Figure 10: Attention mechanism

These queries, keys, and values are directly related to
concepts from retrieval systems. Using Youtube as an ex-
ample, the engine will map your query and compare a set
of keys like video title or description text associated with
a set of videos stored on the site, and then present the best
matching videos which are the values. Mathematically, the
queries and keys are multiplied to get the dot product be-
tween a key and query. If they are similar, then the value
will be high given a vector interpretation. A SoftMax op-

5



eration is applied to return what is essentially the most im-
portant connections. This is used to weigh the values so a
small output for a certain value means it is not important for
that query. The equation is described as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the dimension of the keys and is used to prevent
small gradients. This attention mechanism is a single linear
view of the sequence. In practice, multi-head attention is
used where each head is an independent linear view of the
sequence. Since they are independent, the hope is that each
head will learn something different about the data and thus
useful to improve results. Figure 11 illustrates how multiple
heads are added to the attention mechanism.

Figure 11: Multi-head attention mechanism

Each head will find a linear projection to a smaller space
from the model dimension. These multiple projected keys,
queries, and values are fed to h attention mechanisms to
get the attention matrices. Once done, all are concatenated
together to be projected back to the model dimension via a
linear layer. Mathematically, this can be described as the
following:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

where the projection matrices are described as WQ
i ∈

Rdmodel×dk ,WK
i ∈ Rdmodel×dk ,WV

i ∈ Rdmodel×dv ,WO ∈
Rhdv×dmodel . Using these multi-heads is useful since figure
12 shown in Cordonnier et al. [2] illustrates that a multi-
ple head setup will learn a low dimensional subspace of the
data itself.

Figure 12: Captured variance of heads concatenated

Even though the output of each attention is itself not low
rank, it turns out that the product after concatenation is low
rank meaning the heads share common projections and fo-
cus on the important relationships of the data. This multi-
head attention mechanism is a part of what is known as the
transformer layer. Once attention is calculated, this infor-
mation is fed to a multi-layer perceptron. Figure 13 shows
the layout of a transformer block in completion. Figure 14
shows the attention output after many transformer layers in
the problem of image classification.

Figure 13: Transformer block

Figure 14: Attention maps

6


